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Abstract 

Synchronous oscillations impose strict lower limits on the amount of noise-

reduction achievable by averaging individual neuron firing rates.  Here, we show 

that the loss of rate-coded information due to spatiotemporal correlations, such as 

synchrony, can be overcome by encoding the same information in the correlations 

themselves.  A retinal model was used to generate artificial spike trains whose 

spatiotemporal correlations were modulated by stimulus intensity in a manner 

consistent with experimental data.  Pooled multi-unit spike trains were summed 

into a threshold detector whose output was classified by an ideal observer.  For a 

threshold detector with short summation times, realistic spatiotemporal 

correlations yielded superior discrimination of stimulus intensity compared to 

independent Poisson controls.  Even for summation times too long to resolve 

synchronous inputs, temporal correlations still contributed to improved 

discrimination by reducing spike count variability.  Our results show that by 

directly encoding stimulus properties, spatiotemporal correlations in pooled multi-

unit data mediate improved or equivalent information transmission compared to 

statistically independent rate-matched controls.   

 



 
 
 

Introduction 

Neurons represent sensory information as changes in their individual firing rates.  

In order to obtain reliable estimates of rate-coded information on physiological time 

scales, however, from 10’s to 100’s of msec, it may be necessary to average over 

ensembles of similarly activated cells.  While this requirement is consistent with the 

high levels of convergence onto most central neurons, averaging only yields a more 

accurate estimate of rate-coded information to the extent that the input spike trains are 

statistically independent [25,33,34].  When the same input spike trains are instead 

strongly correlated, it is no longer possible to extract the same amount of rate-coded 

information over equivalent time intervals, as fluctuations in the number of spikes 

arising from individual cells will no longer average out across the population of input 

fibers.  Nonetheless, correlated firing is ubiquitous in the nervous system, often 

associated with coherent oscillations in the gamma frequency band (>50 Hz) that 

synchronizes activity both within and between brain areas [12,35].  Here, we use 

‘spatial’ correlations to refer to synchrony between cells at separate locations and 

‘temporal’ correlations to refer to periodic or other reproducible firing patterns that can 

be measured at a single location.   

It is important to understand what consequences strong spatiotemporal 

correlations might have for processing rate-coded information.  One possibility is that 

strong spatiotemporal correlations simply impose an upper limit on the amount of rate-

coded information a population of neurons can represent in a given unit of time 

[25,33,34].  From this perspective, firing correlations are an inevitable but undesirable 

consequence of the massive interconnectivity of neural circuits but otherwise serve no 

significant information processing function.  A second possibility is that correlations 

instead play an essential information processing role, a view supported by studies 

showing that coherent oscillations may be involved in a variety of cognitive processes, 

including attention [11], perception [37], top-down priming [9], and feature integration 

 



 
 
 

[12,35].  Here, we present evidence that these two viewpoints can be reconciled, 

namely, that the information encoded by the correlations themselves can overcome the 

attendant loss of rate-coded information.   

Using a realistic model of how visual information is encoded in the spike trains 

of retinal output neurons, called ganglion cells, we show that the same stimulus 

properties can be encoded both by the firing rates of individual cells and by their mutual 

correlations.  We further show that such hybrid rate/correlation codes can accomplish 

equal or superior reliability of information transmission when extracted by a threshold 

detection process.  Information transmission was assessed by quantifying the 

performance of an ideal observer required to discriminate between different stimulus 

intensities based on the output of a threshold detector.  When driven by correlated 

inputs in which the stimulus intensity was encoded by both the mean firing rate and by 

the level of synchrony, threshold elements mediated equal or superior stimulus 

discrimination than when driven by statistically independent Poisson generators that 

produced, on average, the same number of spikes.  Threshold detectors with short 

integration times and low background event rates (i.e. coincidence detectors) always 

extracted more information from spike trains with realistic correlations than from 

Poisson controls, as the stimulus information encoded by the level of synchrony more 

than compensated for the attendant loss of rate-coded information.  Neurons in the LGN 

and visual cortex are preferentially sensitive to synchronous inputs [1,41] and may serve 

to detect coincidences in retinal input.  Surprisingly, even threshold detectors with long 

integration times, which were thus unable to resolve synchronous inputs, still mediated 

equal or superior stimulus discrimination when driven by correlated inputs compared to 

Poisson controls.  Because temporal correlations became stronger as a function of the 

stimulus intensity, the loss of rate-coded information was countered by an increased 

reliability in the total number of spikes.   

 



 
 
 

Our results are not in conflict with information theory, which stipulates that the 

capacity of a channel is always maximized when the inputs are independent.  In the 

present analysis, inputs are always pooled into a single, multi-unit measure.  The only 

benefit of statistical independence is therefore an improvement in signal to noise.  Our 

results, however, suggest that the reduction in noise can be outweighed by the 

information carried by the correlations themselves.  We propose that the nervous system 

may employ a hybrid encoding strategy that utilizes the enhanced representational 

capacity of spatiotemporal correlations without producing substantial losses in rate-

coded information.  

 

 



 
 
 

Methods 

Retinal Model 

 Artificial spike trains with realistic spatiotemporal correlations were generated 

by a retinal model (fig 1), organized as a 32x32 array with wrap-around boundary 

conditions containing 5 distinct cell types: Bipolar cells (BP), small amacrine cells 

(SA), large amacrine cells (LA), poly-axonal amacrine cells (PA), and alpha ganglion 

cells (GC).  All cell types were modeled as single compartment, RC circuit elements 

obeying a first order differential equation that can be written efficiently in terms of 

matrix multiplications: 
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where V  is a 2-D array denoting the normalized membrane potentials of all cells of 

type k, ( ,  is the time constant, b  is a bias current for setting the resting 
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the connection strengths between presynaptic {k΄} and postsynaptic {k} cell types as a 

function of their separation along one direction, defined here as ‘vertical’, W
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the same information as a function of separation along the perpendicular direction, 

defined here as ‘horizontal’, and the functions  give the associated input-output 

relations for the indicated pre- and post-synaptic cell types, detailed below.  The output 

of the axon-mediated inhibition was delayed by 2 msec, except for the axonal 

connections onto the axon-bearing amacrine cells, which was delayed for 1 msec.  All 

other synaptic interactions were delayed by one time step, which equaled 1 msec.  All 

equations were integrated in Matlab using a direct Euler method. 
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The input-output function for gap junctions was given by the identity: 
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where the dependence on the presynaptic potential has been absorbed into the definition 

of .  This is possible because both the decay term in equation 1 and the omitted 

dependence on the presynaptic potential in equation 2 depend linearly on V , allowing 

the coefficients to be combined.  The input-output function for non-spiking synapses 

was constructed by comparing, on each time step, a random number with a Fermi-

function: 
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where α sets the gain (equal to 4 for all non-spiking synapses), r is a uniform random 

deviate equally likely to take any real value between 0 and 1, and θ is a step function, 

0,1)( ≥= xxθ ; 0,0)( <= xxθ .   

Lastly, the input-output relation used for spiking synapses was: 

 ( ) ( ))()(),( kkkk VVf ′′′ =
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A modified integrate-and-fire mechanism was used to model spike generation.  

A positive pulse (amplitude = 10.0) was delivered to the cell on the time step after the 

membrane potential crossed threshold, followed by a negative pulse (amplitude = -10.0) 

on the subsequent time step.  This resulted in a 1 msec action potential that also 

produced impulse responses in electrically coupled cells, an important element of the 

circuit dynamics.  The bias current, b, was incremented by -0.5 following each spike, 

and then decayed back to the resting value with the time constant of the cell, adding to 

the relative refractory period.  There was in addition an absolute refractory period of 

1 msec. 

Along both the horizontal and vertical directions, synaptic strengths fell off as 

Gaussian functions of the distance between the pre- and post-synaptic cells.  For a given 

horizontal separation, the horizontal weight factor was determined by a Gaussian 

function of the following form: 
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where W  is the horizontal weight factor from presynaptic cells of type k΄ located in 

the j
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th column to the postsynaptic cells of type k located in the ith column, α is a 

normalization factor, determined numerically, which ensured that the total synaptic 

input integrated over all presynaptic cells of type k΄ to every postsynaptic cell of type k 

equaled W , σ is the Gaussian radius of the interaction, and the quantity )'()( kk ji −  

denotes the horizontal distance between the pre- and post-synaptic cells, taking into 

account the wrap around boundary conditions employed to mitigate edge effects.  An 

analogous weight factor describes the dependence on vertical separation.  Equation 5 

was augmented by a cutoff condition that prevented synaptic interactions beyond a 

specified distance, determined by the radius of influence of the presynaptic outputs and 

the postsynaptic inputs, roughly corresponding to the axonal and dendritic fields, 

respectively.  A synaptic connection was only possible if the output radius of the 

presynaptic cell overlapped the input radius of the postsynaptic cell.  Except for axonal 

connections, the input and output radii were the same for all cell types.  For the large 

amacrine cells and the ganglion cells, the radius of influence extended out to the centers 

of the nearest neighboring cells of the same type, producing a coverage factor greater 

then one [43].  The radii of the bipolar, small, and axon-bearing amacrine cells (non-

axonal connections only) extended only halfway to the nearest cell of the same type, 

giving a coverage factor of one [4].  The external input was multiplied by a gain factor 

of 3.  Values for model parameters are listed in tables 1 and 2.   

 

Figure 1 about here 

 



 
 
 

 

Correlated Poisson Process 

 A second method for generating artificial spike trains employed a 

pseudo-Poisson processes.  To produce a random spike train of duration, T, temporal 

resolution, ∆t, and mean spike rate R0, we used the formula:  

 ( )rtRSi −∆⋅= 0θ  (6) 

where Si = {0,1} denotes the presence or absence of a spike in the ith time bin, θ is a step 

function, θ (x<0) = 0, θ (x>0) = 1, and r is a uniform random deviate between zero and 

one supplied by the Matlab intrinsic function RAND.  In the limit that R0·∆t << 1, the 

above procedure reduces to a Poisson process with constant rate R0.   

 To produce correlated spike trains, the same time series, Si, was used as a 

template to construct new spike trains according to the formula:  
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where Si
(k) denotes the spike train of the kth cell, C is the conditional firing rate given 

that a spike occurred in the corresponding time bin of the template train and r is again a 

uniform random deviate.  The maximum value of C·∆t was (1 − R0·∆t)·0.5. 

Data Analysis 

 Reported correlations are expressed as a fraction of the expected 

synchrony due to chance, either measured during baseline activity or during the plateau 

portion of the response to a sustained stimulus (200-600 msec after onset).  With this 

normalization, a correlation amplitude of one at zero delay corresponded to a doubling 

in the number of synchronous events over the expected rate.  Correlations were plotted 

as a function of the delay after averaging over all events occurring during the plateau 

portion of the response.  For each delay value, this average was compensated for edge 

 



 
 
 

effects arising from the finite length of the two spike trains.  To increase the signal to 

noise, the firing rates or correlations were averaged over all cells, or distinct cell pairs, 

responding to the same stimulus, producing a multi-unit peri-stimulus-time-histogram 

(PSTH) or multi-unit cross-correlation-histogram (CCH), respectively.  Auto-

correlation functions were not included in the multi-unit CCH, which thus only included 

cross-correlations between distinct cell pairs.  Error bars were estimated by assuming 

Poisson statistics for the count in each histogram bin.  All correlations were obtained by 

averaging over 200 stimulus trials, using a bin width of 1 msec.   

Ideal Observer 

 An ideal observer was used to discriminate between different intensities 

based on the distribution of threshold events across independent stimulus trials.  For 

each intensity, the number of suprathreshold events was determined on successive trials 

and the results normalized as a probability distribution.  For any given pair of 

intensities, the percent of correct classifications made by an ideal observer was 

inversely related to the degree of overlap between the two distributions.  Total overlap 

corresponded to performance at chance (50% correct) while zero overlap implied 

perfect discrimination (100% correct).  For the threshold detection process, all spikes 

occurring with a given time bin, whose width varied from 1-20 msec depending on the 

experiment, were summed together and the result compared to a threshold.  There was 

no overlap between successive time bins.  The duration of the recording interval, which 

varied from 100 to 400 msec, was adjusted so as to approximately normalize the task 

difficulty as the number of inputs was varied.  The discrimination interval was always 

contained within the plateau portion of the response.   

 



 
 
 

Results 

Artificially Generated Spike Trains  

 Spike trains were generated by a computer model of the inner retina, 

whose parameters were adjusted to qualitatively matched recordings from cat alpha (Y) 

ganglion cells, which exhibit strong spatiotemporal correlations [24,29,30].  Previous 

theoretical studies of correlated activity have employed mathematically generated spike 

trains in which firing correlations were independent of, and thus conveyed no 

information about, the applied stimulus [25,33,34].  However, firing correlations 

between retinal neurons depend strongly on stimulus parameters such as size [2,16,29], 

contrast [29], connectedness [16,30] and velocity [29].  To generate realistic stimulus-

dependent correlations, we used a detailed retinal model.  Our conclusions depend only 

on the degree to which the firing rates and spatiotemporal correlations produced by the 

model are physiologically realistic, but are otherwise independent of whether we 

accurately identified or simulated the underlying physiological mechanisms, a separate 

issue addressed elsewhere [18,19]. 

To guard against the possibility that our mathematically generated spike trains 

exaggerated the information conveyed by correlations, the model was subject to the 

following constraints.  First, when corroborating information was available in the 

published literature, the largest stimulus-evoked correlations between the model-

generated spike trains were comparable to the correlations measured experimentally 

under similar conditions.  Thus, under these circumstances we are confident that none of 

the correlations generated by the model were substantially in excess of the correlations 

present physiologically.  Second, the level of correlations in the absence of stimulation 

was comparable to the spontaneous correlations measured experimentally, ensuring that 

a correlation code would not possess an unfair advantage by starting from an 

unphysiologically low baseline level.  Third, because the retinal model possessed no 

 



 
 
 

mechanism for adaptation, we ensured that the sustained firing rates evoked by stimuli 

of various intensities were probably larger than those that would occur physiologically.  

Thus, the model was probably conservative and likely biased in favor of a rate-code.  

The principal characteristics of the artificial spike trains used in this study are 

best illustrated by examining the multiunit-PSTHs and multiunit-CCHs computed from 

the simulated responses to a narrow bar stimulus of maximum intensity (fig. 2a).  The 

multiunit-PSTH, which combined the responses of all twelve model ganglion cells 

directly beneath the stimulus, consisted of a sharp peak, about 30 msec wide, followed 

by a plateau period of sustained elevated activity (fig. 2b).  Relative to baseline, the 

sustained increase in spike activity produced by the bar stimulus was comparable to or 

larger than the sustained increase in firing exhibited by cat ganglion cells in response to 

high contrast features [6,10].  The pronounced downward notch separating the peak and 

plateau regions is characteristic of ganglion cell responses to large, flashed stimuli [5].   

Despite the absence of periodic structure in the multiunit-PSTH, there were 

nonetheless very prominent high frequency oscillations in the multiunit-CCH recorded 

during the plateau portion of the response (fig. 2c, solid black line).  In the cat retina, 

high contrast stimuli produce an approximate doubling in the number of synchronous 

events relative to the expected level due to chance [29].  In our artificially generated 

spike trains, the temporal correlations produced by a maximum intensity bar stimulus 

exhibited a qualitatively similar increase in the number of synchronous events relative 

to the expected level.  Thus, the artificially generated spike trains used in the present 

study reflect physiologically reasonable levels of correlated activity.  The high 

frequency oscillations were not strongly phase-locked to the stimulus onset, but rather 

tended to become phase randomized over time, as revealed by the decline in correlation 

strength with increasing delay.  Consistent with the absence of stimulus-locked 

oscillations in the model, the shift predictor was negligible (fig. 2c, dashed gray line).  

Correlations between cat ganglion cells exhibit qualitatively similar high frequency 

 



 
 
 

oscillations that decline in amplitude with increasing delay and also possess negligible 

shift predictors [29].  The tendency for high frequency oscillations to become phase 

randomized explains in part why periodic structure is not more commonly observed in 

PSTHs measured experimentally, as such signals tend to average out over multiple 

trials.  Other reasons for the lack of periodic structure in experimentally recorded 

PSTHs include the use of large bin widths, typically 10-20 msec, and/or low pass 

temporal filtering, both of which are commonly employed [cf. 5,10], as well as the use 

of small spots or fine gratings, whereas strong oscillations are only evoked by large 

stimuli [2,16,29].   

Figure 2 about here 

 



 
 
 

 

Firing Correlations and Firing Rate are both Modulated by Stimulus Intensity 

To investigate the relationship between correlation strength and stimulus 

contrast, the same narrow bar covering twelve ganglion cells was varied over a 32-fold 

range of intensities (fig. 3).  The firing rates of the model ganglion cells activated by the 

stimulus, as measured by the multiunit-PSTH, increased in a graded manner as the 

stimulus intensity was raised (fig. 3b).  Similarly, the degree of synchrony during the 

plateau portion of the response, assessed by the peak amplitude of the multiunit-CCH at 

zero delay, also increased with stimulus intensity (fig. 3b).  High frequency firing 

correlations between cat ganglion cells depend similarly on luminance contrast [29].  As 

a function of stimulus intensity, synchrony could be modulated over a greater dynamic 

range, here measured relative to baseline activity, than could the fractional change in the 

multiunit firing rate (figs. 3c).  Overall, firing correlations were very sensitive to 

stimulus intensity, and thus might convey information about contrast in additional to 

that represented by the mean firing rate across the ensemble of activated cells.   

Figure 3 about here 

Correlated Inputs Transmit More Information through Coincidence Detectors than 
Independent Rate-Matched Controls 

A simple threshold detector with a short integration time window and a low rate 

of suprathreshold background events was able to extract the stimulus intensity more 

reliably from a hybrid rate/correlation code than from statistically independent, rate-

matched Poisson distributed inputs.  Spikes from a column of twelve ganglion cells 

activated by a narrow bar were summed into a simple threshold detector (fig. 4).  The 

event rate of the detector was determined by the total number of times the input crossed 

threshold within a 200 msec epoch during the plateau portion of the response.  For these 

 



 
 
 

experiments, the detection threshold was set to a level that required three or more spikes 

to arrive within the same 2 msec time bin in order to produce a detector event.  To 

assess the extent to which the detector was able to utilize firing correlations between its 

inputs, the twelve stimulated ganglion cells were replaced by independent Poisson 

generators that, on average, produced the same number of spikes per unit time.  For both 

correlated and Poisson input, the baseline detector event rate was very low, around 1 Hz 

(fig. 4a).  A high-intensity stimulus produced a greater increase in the detector event 

rate when the inputs were correlated as compared to the case when the inputs were 

independent.  This extra sensitivity reflected the fact that a threshold process with a 

short integration time is well suited for detecting rare synchronous events [17,20], a 

property also exhibited by cortical and sub-cortical neurons [1,41].   

Figure 4 about here 

When driven by correlated input from the model ganglion cells, the output of the 

threshold detector allowed for better discrimination between different stimulus 

intensities than when driven by independent Poisson generators.  For each intensity, we 

plotted the distribution of the total number of detector events over 200 independent 

stimulus trials (fig. 4b).  As the stimulus intensity increased, the distributions shifted to 

the right, reflecting the greater number of suprathreshold inputs.  When the threshold 

detector was driven by correlated input from the retinal model, the event distributions 

for different intensities were more separable than when driven by the rate-matched 

controls.  To quantify the degree to which firing correlations caused detector output to 

be more discriminable, we used an ideal observer based on an optimal Bayes 

discriminator to estimate the maximum percentage of intensity comparisons that could 

be correctly classified [8].  Starting from several different baselines, firing correlations 

allowed for a higher percentage of correct intensity classifications over a broad range of 

intensity increments (fig. 4c).  The abscissa of each point gives the final stimulus 

 



 
 
 

intensity, while the x-intercept of the line passing through that point yields the 

corresponding baseline intensity.  The ordinate of each point gives the percentage of 

trials on which an ideal observer could correctly classify the final stimulus intensity, 

relative to the baseline, using only the single trial output of the detector.  For many 

pairwise intensity discriminations, firing correlations allowed approximately 10 

additional trials out of a 100 to be correctly classified (solid black lines) compared to 

the Poisson control (dashed gray lines).  Averaged over all intensity increments, the 

extra number of correct classifications was approximately 5/100, but this value is likely 

conservative due to saturation.  Our results suggest that when retinal output is decoded 

by a threshold detection process with a short integration time window, firing 

correlations allow information to be transmitted more reliably than would be the case 

with independent firing rates.  

Correlations Mediate Greater or Equivalent Stimulus Discrimination for a Wide Class 
of Threshold Detectors 

The hybrid rate/correlation code continued to mediate equal or superior stimulus 

discrimination even when the integration time of the threshold detector was increased so 

as to diminish the importance of synchronous inputs.  To quantify the performance of 

the ideal observer for a given threshold detector, we defined the quantity ∆, which gives 

the difference in the percentage of correctly classified trials between the hybrid 

rate/correlation code and the Poisson control, averaged over all intensity pairs.  Our 

results show that a hybrid rate/correlation code yields greater or equivalent stimulus 

discrimination over a wide range of integration times and background activity levels 

(fig. 5).  Plotted as a function of integration time, ∆ was largest for small summation 

intervals well suited to resolve synchronous inputs (fig. 5a).  When plotted as a function 

of the detection threshold, ∆ generally increased for integration times less than 

approximately 10 msec, since larger thresholds produced lower values of background 

activity and thus made the detection process more sensitive to synchrony (fig. 5b).    

 



 
 
 

A somewhat surprising aspect of our results was that as the integration time 

became large enough to effectively discard intensity information encoded by the degree 

of synchrony, ∆ did not become strongly negative, but rather approached an asymptotic 

level near zero.  Since spatial correlations adversely affect rate-coded information 

[25,33,34], it might have been anticipated that once the integration time became 

sufficiently long to discount any information encoded by the degree of synchrony, 

independent Poisson inputs would have mediated greater stimulus discrimination than 

correlated inputs.  However, such reasoning fails to consider the effects of temporal 

correlations, which like spatial correlations also increased as a function of stimulus 

intensity, as indicated by the increased persistence of periodic structure in the multi-unit 

CCH as the stimulus intensity was increased (fig. 3).  As a result of the stronger 

temporal correlations, the spike trains became more regular, and thus the total number 

of inputs over the course of the 200 msec trail became more reliable predictors of the 

stimulus intensity.   

To quantify the reliability of the afferent spike trains, we computed the Fano 

factor of the multi-unit input as a function of stimulus intensity (fig. 5c).  The Fano 

factor is defined as the variance in the number of spikes divided by the mean, and is 

equal to one for a Poisson process [39].  At all intensities, the Fano factor of the 

combined correlated input (solid line) was less than that of the Poisson control (dashed 

line), indicating that temporal correlations caused the total number of spikes to be less 

variable, and therefore more reliable, than for independent Poisson generators.  In the 

absence of temporal correlations, the Fano factor would have increased markedly with 

stimulus intensity as a consequence of the increased spatial correlations.  To illustrate 

this fact, a second control was employed in which stimulus-dependent spatial 

correlations were introduced between the separate Poisson generators.  The maximum 

spatial correlation between the modified Poisson spike trains was set so as to 

approximately equal the maximum synchrony present in the hybrid rate/correlation 

 



 
 
 

code, while the minimum synchrony was set to zero and a linear interpolation was used 

for intermediate intensities.  By allowing no more than one spike in each 10 msec time 

bin, thereby producing a relative refractory period, the Fano factor in the absence of 

spatial correlations could be reduced to approximately the same level exhibited by the 

model during background activity.  In the absence of temporal correlations, strong 

spatial correlations between the modified Poisson generators produced a large rise in the 

Fano factor of the combined input as the stimulus intensity was increased (dotted line).  

Our results demonstrate that a refractory period, by itself, cannot account for the 

reliability of the total integrated input in the presence of strong spatial correlations, but 

that such reliability results naturally from strong temporal correlations due to high 

frequency oscillations.  Thus, strong stimulus-dependent spatiotemporal correlations do 

not necessarily result in less information transfer, even when only the total spike count 

over a relatively long interval is considered. 

Figure 5 about here 

Hybrid Rate/Correlation Codes Work Best over Limited Numbers of Cells 

Up to this point, we have only considered the effects of correlations between 

relatively small numbers of inputs.  While this is consistent with the convergence ratios 

of sensory input onto neurons in the LGN and V1 [32,42], hybrid rate/correlation codes 

might cease to be advantageous as the number of inputs was increased.  To explore the 

behavior of a hybrid rate/correlation code as a function of the number of input spike 

trains, we used a much larger stimulus that activated a 12×12 array of neurons.  

Oscillations between retinal ganglion cells increase markedly in response to the larger 

stimuli [2,16,29] an this was also true in our retinal model.  However, because the 

maximum correlation strength between cat alpha cells has not been precisely 

determined for such stimuli, our results should be interpreted as an upper limit on the 

 



 
 
 

information that might be conveyed by a hybrid rate/correlation code.  As a function of 

the number of input spike trains, ∆ reached a maximum for a relatively small number of 

correlated inputs, at a value between 10 and 50 (fig. 6a).  For integration times less than 

5 msec, ∆ remained greater than or equal to zero regardless of the number of inputs.  

For a threshold process employing longer integration times, correlations produced 

progressively poorer stimulus discrimination as the number of inputs increased.   

As the number of inputs was raised, we increased the threshold so as to maintain 

the background detection rate as close to 1 Hz as possible, but without falling below 

0.1 Hz.  As the number of inputs increased, it was necessary to use a lower threshold for 

the Poisson control than for the correlated input, due to the small oscillations present in 

the background activity, in order to maintain the level of background suprathreshold 

events close to the target level of 1 Hz.  We obtained similar results when the target 

level of background suprathreshold events was increased, but at smaller values of ∆ on 

average.  In order to maintain task difficulty as the number of inputs was increased, the 

duration of each trial was lowered from 400 to 100 msec.  Although the actual hybrid 

code present physiologically may not be as robust with respect to the number of inputs 

as in our retinal model, the general principles illustrated by our results are nonetheless 

likely to be valid.  A hybrid code can transmit significantly more information than a 

pure rate code regardless of the number of inputs as long as the target population is able 

to respond preferentially to synchronous events.   

The dependence of the hybrid code on the number of cells feeding into the 

detector is paralleled by the behavior of the Fano factor of the combined input (fig. 6b).  

When the number of inputs was small, the Fano factor was always less than one, 

regardless of the stimulus intensity.  As the number of inputs increased, however, the 

Fano factor became much greater than one at all but the smallest stimulus intensities.  

This result is consistent with previous studies showing that spatial correlations become 

progressively more destructive of rate-coded information as the number of neurons 

 



 
 
 

increases [25,33,34].  When the number of inputs is very large, therefore, a hybrid 

rate/correlation code is only likely to be effective when the integration time is small 

enough to resolve synchronous events. 

Figure 6 about here 

 



 
 
 

Discussion 

Previous studies of how wide spread firing synchrony affects the representation 

of information in neural ensembles have focused solely on how spatial correlations 

impede the extraction of rate-coded signals [25,33,34].  In particular, such studies have 

emphasized how averaging over ensembles of similarly activated neurons only reduces 

the trial-to-trial variability to the extent that individual fluctuations are uncorrelated.  

From this point of view, spatial correlations are an inevitable feature of densely 

interconnected networks and as such limit the effective size of neural ensembles to 

several tens of strongly correlated cells.  However, such analyses have generally ignored 

the possibility that spatiotemporal correlations themselves could encode significant 

information, and thus compensate for the attendant loss of rate-coded signals.  Here, we 

have demonstrated that both spatial and temporal correlations can lead to improved 

information transmission under fairly general assumptions.  In particular, spatial 

correlations, when evoked in an intensity-dependent manner, can significantly improve 

information transfer through threshold neurons functioning as coincidence detectors.  In 

a complementary fashion, we found that temporal correlations, when also proportional 

to intensity, mediate greater stimulus discrimination by making the total number of 

input spikes more reliable regardless of the integration time window employed.  Thus, 

we found that the negative effects of spatial correlations described in previous studies 

could be overcome in two ways: 1) by encoding similar information in the degree of 

synchrony and 2) by making the spike trains more regular as they become more 

synchronous. 

General principles of population encoding and decoding, especially those 

involving temporal correlations between multiple neurons, are still very difficult to 

investigate experimentally.  To reproduce the results of the present model, it would be 

necessary to record simultaneously from multiple input neurons and at least one 

common postsynaptic neuron and to manipulate the firing correlations between the 

 



 
 
 

input neurons either through direct multi-electrode stimulation or else via 

pharmacological techniques.  While it is not clear that such biological experiments are 

currently feasible, there does exist sufficient information to construct artificial spike 

trains possessing physiologically realistic spatiotemporal correlations.  Moreover, it is 

not necessary to possess a complete understanding of the physiological mechanisms that 

give rise to strong spatiotemporal correlations in order to analyze their information 

content. 

While multi-electrode recording techniques allow simultaneous monitoring of 

tens to hundreds of neurons, such data can typically only address questions of how 

information is encoded across ensembles of similar cells, but not how the same 

information might be extracted by down stream processing elements.  Here, we have 

focused on signal detection using a threshold process that captures many essential 

aspects of neural dynamics.  By using a computational model, it was possible to 

compare the stimulus discrimination accomplished by a hybrid rate/correlation code 

with that mediated by a pure rate-code that produced, on average, the same number of 

spikes.  Finally, by using a computational model, we were able to examine the effects of 

spatiotemporal correlations over a wide class of threshold detection processes, and in 

this way obtained insights into the physiological conditions necessary to utilize a hybrid 

rate/correlation code. 

The main drawback of using a computational model is the need to ascertain 

whether the results are physiologically relevant.  Fortunately, spatiotemporal 

correlations between retinal ganglion cells have been sufficiently well characterized so 

as to impose tight constraints on artificially generated spike trains.  Where possible to 

verify, the model appeared to favor a rate code over a correlation code.  This was the 

case for the narrow bar stimulus employed in our first several experiments.  The 

maximum synchrony between the model spike trains, measured relative to chance and 

averaged over all cells responding to the bar, was somewhat less than the levels of 

 



 
 
 

synchrony between widely separated cells recorded in the cat retina in response to 

similar stimuli [30].  Likewise, the maximum sustained increase in firing rate in our 

artificial spike trains was probably exaggerated due to the lack of adaptation 

mechanisms in the model.  Our results were also useful for illustrating general 

phenomena, such as how hybrid rate/correlation codes might scale as the number of 

cells conveying redundant information increased.  The effectiveness of a hybrid 

rate/correlation code was found to involve a trade off between the loss of rate-coded 

information due to spatial correlations and the gain in information due to the 

information encoded by the spatial correlations themselves.  At longer integration times 

that were insensitive to synchronous input, stimulus-dependent temporal correlations 

still contributed to improved performance on intensity discrimination tasks by causing 

spike counts to become more regular.  As the number of neurons increased, the loss of 

rate-coded information due to spatial correlations became more severe.   

Our results are likely to be helpful for interpreting spatiotemporal correlations in 

the retina and elsewhere in the CNS.  High frequency oscillations are ubiquitous in the 

vertebrate retina, having been measured extracellularly in cats [22,29,30,38], rabbits [2], 

frogs [16] and mudpuppy [45], as well as in the ERGs of humans [7,44] and primates  

[13].  The conservation of retinal oscillations across such a broad range of vertebrate 

species suggests they may be important for visual function.  Strong spatiotemporal 

correlations have also been recorded elsewhere in the mammalian nervous system, 

including visual [14,15,21,23] and sensorimotor [27,28] cortex and the hippocampus 

[40].  Numerous interpretations of the information processing function accomplished by 

spatiotemporal correlations have been suggested [9,11,12,35,37].  Here, we note that 

since spatiotemporal correlations are widely present throughout the brain; the nervous 

system might as well make use them.  If correlations are indeed an unavoidable 

consequence of neural connectivity, our results suggests that the loss of rate-coded 

information could be mitigated by employing a hybrid rate/correlation code.  On the 

 



 
 
 

other hand, correlations may also convey information that is not well represented in the 

simple rate-code.  Our results suggest that the brain might exploit spatiotemporal 

correlations for higher level processing functions without sacrificing rate-coded 

information.  

In the retina, it has been argued that information transfer is maximized when the 

outputs are uncorrelated [36] and recent studies indicate that the relatively strong firing 

correlations sometimes observed between neighboring ganglion cells convey little 

additional information about natural scenes [31].  Our results are not in conflict with 

these findings.  Information theory, by itself, does not address how stimulus properties 

are extracted by target neurons.  While formal mathematical measures predict that 

ganglion cells convey more information when their activity is uncorrelated, 

experimental and theoretical evidence suggests that synchronous inputs are particularly 

salient [1,17,41], and our current results demonstrate that information encoded by firing 

correlations between model ganglion cells can be efficiently extracted by threshold 

neurons under fairly general assumptions.  Simultaneous recordings in cat from the 

retina, the LGN, and from area 18 of the visual cortex indicate that synchrony between 

retinal ganglion cells can be propagated to higher levels in the visual system [3].  It may 

therefore be necessary to consider the impact of correlated activity in order to fully 

account for its role in information processing.  Finally, we note that using firing 

correlations to encode local stimulus properties does not preclude additional encoding 

functions that have been suggested [26].  

Correspondence and requests for materials should be addressed to G.K. (e-mail: 

gkenyon@lanl.gov). 
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Figure Captions 

Fig. 1. The model contained five cells types: bipolar (BP) cells, small (SA), large (LA) 

and poly-axonal (PA) amacrine cells, and alpha ganglion (GC) cells, arranged as a 

32x32 square mosaic with wrap-around boundary conditions.  Conceptually, 

connections could be organized into 3 categories.  a) Feedforward and feedback 

inhibition.  Excitatory synapses from BPs were balanced by a combination of reciprocal 

synapses and direct inhibition of the GCs, primarily mediated by the non-spiking 

amacrine cell types.  b) Serial inhibition.  The three amacrine cell types regulated each 

other through a negative feedback loop.  c) Resonance circuit.  The PAs were excited 

locally via electrical synapses with GCs and whose axons mediated wide field inhibition 

to all cell types, but most strongly onto the GCs.  Note: not all connections are shown.  

Explanation of symbols: Excitation (triangles), inhibition (circles), gap junctions 

(resistors).  

Fig 2. Artificial spike trains generated by the retinal model.  a) A column of twelve 

model ganglion cells was stimulated by a narrow bar (white rectangle, intensity = ½, 

stimulus dimensions 2×8 GC receptive field diameters).  Circles indicate GC receptive 

field diameter.  b) Multiunit-PSTH obtained by averaging the individual PSTHs over all 

ganglion cells activated by the stimulus.  The solid line at the bottom of the panel 

indicates the stimulus duration (600 msec).  Vertical ticks denote the plateau portion of 

the response.  c) Multiunit-CCH, obtained by combining individual CCHs from all 

distinct pairs of ganglion cells activated by the stimulus (solid black lines).  Correlations 

expressed as a fractional change from the expected synchrony due to chance 

(dimensionless units).  Shift predictors (dashed gray lines) obtained by recomputing the 

multiunit-CCH using spike trains from different stimulus trials.   

 



 
 
 

Fig. 3.  Firing correlations are modulated over a greater dynamic range than firing rate 

as a function of stimulus intensity.  The stimulus was again a narrow bar covering 

twelve ganglion cells.  a) Intensity series formed by the multiunit-PSTHs of ganglion 

cells activated by the stimulus.  The intensity, in log2 units, is indicated at the upper 

right of each histogram (bin width = 10 msec).  b) Intensity series formed by the 

multiunit-CCHs between all pairs of ganglion cells activated by the stimulus, relative to 

the baseline level of synchrony.  Firing correlations during the plateau response are 

strongly modulated by stimulus intensity.  c) Fractional change from baseline in 

synchrony (black lines, circles) as a function of stimulus intensity, compared to the 

fractional change in firing rate (gray lines, squares).  Synchrony could be modulated 

over a greater dynamic range than the sustained firing rate.   

Fig. 4. Firing correlations during the plateau portion of the response allow improved 

discrimination of stimulus intensity compared to independent Poisson input.  a) 

Example of the threshold detection process.  Stimuli consisted of a narrow bar presented 

at various intensities (same stimulus as in fig. 3).  Ganglion cell input to the threshold 

detector during the plateau portion of the response is shown on the left and equivalent 

Poisson input on the right.  The baseline activity of the detector in the absence of 

stimulation (top row) is very low.  A stimulus with intensity = -1 in log2 units (bottom 

row) produced strong correlations between ganglion cells, resulting in a relatively large 

number of suprathreshold events.  Dashed line: detector threshold.  Dotted lines: 

average input ± std. dev.  Summation window, 2 msec.  b) Normalized probability 

distributions giving, for each stimulus intensity, the number of suprathreshold events 

during the 200 msec analysis interval.  Left: Hybrid rate/correlation code.  Right: 

Poisson control.  The distribution of suprathreshold events produced by the hybrid code 

were more separable.  c) Fraction of correct intensity classifications by an ideal 

observer.  The ideal observer choose between two equally likely stimulus intensities 

based on the number of detector events on each trial.  Input to the detector came from 

 



 
 
 

either a hybrid code (solid black lines) or from Poisson controls (dashed gray lines).  

Each point represents the fraction of trials on which the intensity indicated by the 

abscissa was correctly distinguished from a lower intensity, denoted by the intersection 

of each line with the x-axis.  Error bars computed assuming binary statistics for the 

overlap between each pair of distributions (omitted from Poisson controls for clarity). 

Figure 5.  Hybrid rate/correlation codes yield superior or equivalent stimulus 

discrimination for a broad class of threshold detectors.  a) ∆, the difference in the 

percentage of successfully classified trials using a hybrid code as opposed to 

independent Poisson controls, plotted as a function of temporal integration window.  ∆ 

declined with increasing integration time, but did not become strongly negative.  

Individual points are for different thresholds.  b) ∆ vs. detection threshold for different 

integration times.  Same data as in previous panel.  The increase in ∆ with threshold 

declines progressively at longer integration times.  c) Fano factors (variance/mean of the 

total input spike count) plotted vs. stimulus intensity.  Solid line+circles: Hybrid code.  

Dashed line+squares: Poisson control.  Dotted line+triangles: Modified Poisson process 

in which the separate generators were correlated by an amount proportional to the 

stimulus intensity and no more than one spike could occur in any 10 msec time bin.  The 

Fano factor for the hybrid code remained less than one due to temporal correlations 

resulting from high frequency oscillations, while spatial correlations alone produced a 

large increase in variability relative to independent Poisson inputs.   

Figure 6.  Hybrid rate/correlation codes work optimally for limited numbers of input 

neurons. These experiments used a 12×12 uniform spot that produced larger 

spatiotemporal correlations than did a narrow bar.  a) ∆ vs. the number of input cells 

plotted for several different integration times.  ∆ reached a peak at between 10-50 inputs 

and remained positive as the number of inputs increased as long as the integration time 

was small enough to resolve synchronous inputs, but ∆ become negative for the same 

 



 
 
 

number of inputs if the integration time was too long.  b) Fano factor vs. number of 

inputs plotted for several different intensities (log2 units).  At high intensities, which 

produce strong spatial correlations, the Fano factor increased sharply as a function of 

the number of inputs, thus accounting for the poorer performance of the hybrid code in 

this regime.   

 



 
 
 

Table 1: Cellular parameters. 

  τ  b  n×n  d  σ 

BP  10.0  -0.0  64×64  0.25  0.25 

SA  25.0  -0.5  64×64  0.25  0.25 

LA  20.0  -0.25  32×32  1.0  0.5 

PA  5.0  -0.025  64×64  0.25/9.0a 0.25/3.0a 

GC  5.0  -0.025  32×32  1.0  0.5 

Explanation of symbols: τ: time constant (msec); b: bias; n×n: array size; d: cutoff 

radius, σ: Gaussian radius (see eq. 5).  aInner radius/outer radius. 

 



 
 
 

 

Table 2: Synaptic weights. 

 BP  SA  LA  PA   GC 

BP *  -0.375b - 3.0b  -3.0b/-15.0c  * 

SA 3.0b  *  -3.0b   0.0b/-15.0c  * 

LA 3.0b  *  0.25a  -3.0a/-15.0c  * 

PA 0.75b  -0.75b  0.25a  0.25a/-45.0c  0.25a,d 

GC 9.0b  -4.5b  -4.5b  0.25a/-270.0c  * 

Each term represents the total integrated weight from all synapses arising from the 

corresponding presynaptic type (columns) to each cell of the corresponding postsynaptic 

type (rows), (the quantity W  in eq. 5).  Asterisk (*) indicates absence of 

corresponding connection.  Synapse type indicated by superscript: 

),( kk ′

agap junction, bnon-

spiking synapse, cspiking synapse. dMaximum coupling efficiency (ratio of post- to pre-

synaptic depolarization) for this gap junction synapse: DC=11.3%, Action 

Potential=2.7%. 
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